Basolateral Na+ pump modulates apical Na+ and K+ conductances in rabbit cortical collecting ducts.
نویسندگان
چکیده
Previous studies indicated that an acute elevation of peritubular K+ enhances K+ secretion and Na+ reabsorption in the isolated perfused cortical collecting duct (CCD) from rabbit kidneys [S. Muto, G. Giebisch, and S. Sansom. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F108-F114, 1988]. To determine the underlying cellular mechanisms, we used microelectrode techniques to assess the membrane properties of collecting duct cells in isolated perfused CCDs of control and desoxycorticosterone acetate (DOCA)-treated rabbits following acute stimulation of the basolateral Na+-K+ pump by rapidly increasing the bath solution from 2.5 to 8.5 mM K+. This induced in both groups of tubules, first, a short-lasting hyperpolarization and, second, a sustained phase of depolarization of transepithelial, basolateral, and apical membrane voltages. Whereas the transepithelial conductance (GT) and fractional apical membrane resistance (fRA) remained unchanged during the initial phase of hyperpolarization, during the depolarization, GT increased and fRA decreased. Perfusion of the lumen with solutions containing either amiloride or Ba2+ attenuated the high K+-induced apical electrical changes, and basolateral strophanthidin abolished both apical and basolateral electrical responses during elevation of K+ in the bath. From these results we conclude the following: 1) acute elevation of basolateral K+ activates the basolateral Na+-K+ pump, which secondarily elevates the apical Na+ and K+ conductances; 2) DOCA pretreatment increases the basolateral K+ conductance and augments the response to the rise of K+ of both basolateral Na+-K+ pump activity and apical cation conductances.
منابع مشابه
Intracellular Na+ and K+ activities and membrane conductances in the collecting tubule of Amphiuma
Membrane potentials and conductances, and intracellular ionic activities were studied in isolated perfused collecting tubules of K+-adapted Amphiuma. Intracellular Na+ (aNai) and K+ (aKi) activities were measured, using liquid ion-exchanger double-barreled microelectrodes. Apical and basolateral membrane conductances were estimated by cable analysis. The effects of inhibition of the apical cond...
متن کاملElectrical properties of the rabbit cortical collecting duct from obstructed kidneys after unilateral ureteral obstruction. Effects of renal decapsulation.
Ureteral obstruction causes impaired salt wastage and K+ secretion in the distal nephron segments, including the cortical collecting duct (CCD). Recently, we demonstrated that conductances of Na+ and K+ in the apical membrane, as well as the electrogenic Na(+)-K+ pump activity and the relative K+ conductance in the basolateral membrane of the collecting duct cell, were inhibited in the obstruct...
متن کاملEffects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.
The cortical collecting tubule is one of the main nephron sites where mineralocorticoids and a high potassium diet modulate sodium (Na) and potassium (K) transport. In this study we explored the steroid-independent effects of a high K diet on the electrical transport properties of the isolated rabbit cortical collecting tubule principal cells. The electrophysiological analysis included transepi...
متن کاملShort-term effects of uninephrectomy on electrical properties of the cortical collecting duct from rabbit remnant kidneys.
Microelectrode techniques were used to assess the electrical properties of the collecting duct cell in the isolated perfused cortical collecting duct from remnant kidneys 3, 6, and 24 h after uninephrectomy (UNX); results were compared with those from sham-operated kidneys. Plasma aldosterone levels did not change during the time course after UNX. The lumen-negative transepithelial voltage was ...
متن کاملRegulation of Na+, K(+)-ATPase in the rat outer medullary collecting duct during potassium depletion.
Because in outer medullary collecting ducts (OMCD) of K(+)-depleted rats, K+ secretion is abolished, whereas Na+, K(+)-ATPase, which energizes this secretion, is markedly stimulated, it has been proposed that Na+, K(+)-ATPase was mislocated to the apical cell membrane and energized K+ reabsorption. This hypothesis has been supported by paradoxical effects of ouabain in K(+)-depleted compared wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 276 1 Pt 2 شماره
صفحات -
تاریخ انتشار 1999